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Abstract—Combinatorial testing (CT) aims at detecting 

interaction failures between parameters in a system. Identifying 

the failure-inducing combinations of a failing test configuration 

can help developers find the cause of this failure. However, most 

studies in CT focus on detecting the failures rather than 

identifying failure-inducing combinations. In this paper, we 

propose the notion of a tuple relationship tree (TRT) to describe 

the relationships among all the candidate parameter interactions. 

TRT reduces additional test configurations that need to be 

generated in the fault localization process, and it also provides a 

clear view of all possible candidate interactions. As a result, our 

approach will not omit any possible interaction that could be the 

cause of a failure. In particular, we can identify multiple failure-

inducing combinations that overlap with each other. Moreover, 

we extend our approach to handle the case where additional 

failure-inducing combinations may be introduced by newly 

generated test configurations. 

Index Terms—Combinatorial testing, Fault localization, 

Tuple relationship tree, overlapping combinations, New import 

combinations. 

I.  INTRODUCTION 

The behavior of a software system may be influenced by 

many factors, such as input parameters and configuration 

options. Some interactions of these factors may cause failures 

that may be difficult to track. One way to ensure software 

correctness is to perform exhaustive testing of all combinations 

of these factors. This is, however, not feasible when the 

number of factors is large. Combinatorial testing (CT) is an 

efficient testing method to deal with this problem [1]. It has 

been shown to be effective at detecting failures caused by 

interactions of parameters. However, most work on CT has 

primarily focused on detecting failures. Little work has been 

reported that provides support for identifying failure-inducing 

combinations, i.e., combinations that cause the failures that are 

detected by CT [2]. 

Generally, when a test case with a configuration failed 

during the system testing, there are 2
n
 – 1 (n is the number of 

parameters of the configuration) possible combinations that 

may cause this failure. Identifying which specific combinations 

that constitutes to failure-inducing combinations is an 

important problem in that these combinations can help to 

reduce the scope of the code that needs to be inspected to locate 

the actual fault. 

Recently, several methods have been proposed that attempt 

to identify failure-inducing combinations. However, there is 

much room left to be improved in handling the following two 

major aspects: 1. Identifying multiple combinations which 

overlap with each other. 2. Identifying additional failure-

inducing combinations that are introduced by newly generated 

test configurations.  

 To identify the failure-inducing combinations in a failing 

test configuration, we proposed an approach based on the 

notion of a tuple relationship tree (TRT). In our approach, we 

first generate a tree structure to capture the relationship 

between different combinations in a failing test configuration. 

Then we select an unknown combination that has yet to be 

determined whether it is a failure-inducing combination. After 

a combination has been selected, we analyze it to confirm if it 

is a failure-inducing combination. This is followed by 

progressive checks on other related combinations. This process 

continues until no other unknown combination could be found.  

As we know, the TRT provide a clear view of all possible 

interactions in a failing test configuration. As a result, our 

approach will not omit any possible combination that may 

induce the cause of a failure. In particular, we can identify 

multiple failure-inducing combinations that overlap with each 

other. Our approach is shown to be efficient, which requires 

only a few number of extra test configurations to identify 

failure-inducing combinations. The efficiency of our approach 

lies in the combination selecting strategy, i.e., the order of 

selecting the unknown combination from the remaining 

unknown combinations. The main idea behind our selecting 

strategy is the following: 1. Greedy step: we select a sequence 

of closely related unknown combinations from the remaining 

unknown combinations and sort them according to their 

relationships with each other. Generally, there is more than one 

such sequence. As such, we will select the one with the 

maximum number of combinations for that we can determine 

the combinations as much as possible in the iteration. 2. Search 

step: for the sequence we select in the first step, we use binary 

search to find the combination in the sequence as the one to be 

analyzed for this turn. Since the combinations in the sequence 

are closely related and sorted according to their relationships 



with each other, we can largely reduce the number of extra test 

configurations needed to identify the failure-inducing 

combinations through the use of binary search technique. 

Furthermore, we proposed an augmented version of our 

approach which reinforces the process of determining a 

combination to see if it is a failure-inducing combination. Such 

an improvement provides a preliminary solution to handle the 

case where additional failure-inducing combinations may be 

introduced by newly generated test configurations. 

Contribution of this paper: 1) We propose a new 

approach to identifying the failure-inducing combinations in a 

failing test configuration; 2) Our approach can identify multiple, 

overlapping combinations; 3) The augmented version of our 

approach can handle the case where additional failure-inducing 

combinations may be introduced by newly generated test 

configurations. 

The rest of this paper is organized as follows: Section 2 

introduces some preliminary definitions and propositions. 

Section 3 describes our model for identifying failure-inducing 

combinations. Section 4 presents our experimental results. 

Section 5 summarizes related work. Section 6 provides 

concluding remarks and discusses the future work. 

II. PRELIMINARY 

Assume that the SUT (software under test) has n parameters, 

and each parameter ci has ai discrete values from the finite set 

Vi, i.e., ai = |Vi|(i = 1,2,..n). Some of the definitions and 

propositions below are originally defined in [3]. 

Definition 1 A test configuration is an array of n values, 

one for each parameter of the SUT, which is denoted as (v1, 

v2… vn), where v1∈V1, v2∈V2… vn∈Vn.  

For example, consider a web application which may be 

influenced by various aspects including operating system, 

network bandwidth, browser and codec. We list the possible 

values of each parameter in Table I. Then (Mac OS, 50M, 

Chrome, AC-3 ACM) is a test configuration for the application. 

TABLE I.  PARAMETER VALUES OF THE WEB APPLICATION 

OS Bandwidth Browser Codec 

Windows 50M Chrome AC3Filter 

Mac OS 200M FireFox MPEG Layer-3 

Ubuntu 1G Opera AC-3 ACM 

Definition 2 A tuple is also an array of some values, one 

for a parameter of the SUT. We denote a tuple as [-,…, vn1 ,-

,…vnk  ,…] which means the tuple consists of k values that 

comes from the parameter cn1 ,cn2 ,…cnk  of the SUT, and the ‘-

’ means the excluded corresponding parameter value. We 

called the number of values in a tuple the size of the tuple. We 

also call a tuple of size k the k-size tuple. The tuple is also 

known as the combination mentioned before. 

For example, [Mac OS, 50 M, -, -] is a 2-size tuple for the 

web application. 

Definition 3 A tuple is called a faulty tuple, when every 

possible test configuration containing this tuple results in a 

failure. And a tuple is called a healthy tuple when we find at 

least one passed test configuration that contains this tuple.  

For example, if [Mac OS , 50 M , -, -] is a faulty tuple, then 

all the test configurations containing it, such as (Mac OS , 50 

M , Chrome, AC-3 ACM), (Mac OS , 50 M , Firefox, 

AC3Filter), will fail. Conversely, if there is at least one of these 

test configurations that passes, [Mac OS, 50 M, -, -] is labeled 

as a healthy tuple. 

Definition 4 For two tuples A and B, if every parameter 

value in A are also in B, and the size of A is less than B, then 

we called A the child of B, and B the parent of A. 

Furthermore, if the size of A is exactly one less than B, then 

the relationship between A and B are direct. 

For example [Mac OS, 50 M, Chrome, -] is the parent of [-, 

50M, -, -], and [Mac OS, 50 M, Chrome, -] is the direct parent 

of [Mac OS, 50 M, -, -]. 

Definition 5 If a tuple is a faulty tuple and all its child 

tuples are healthy tuples, we then call the tuple a minimal faulty 

tuple. 

Identifying minimal faulty tuples can facilitate debugging 

effort, as it can reduce the scope of the code that needs to be 

inspected. 

A. Propositions 

We list four propositions. Due to space limitation, we will 

skip the proofs of these propositions as they are pretty 

straightforward. 

Proposition 1 All the tuples in a passed test configuration 

are healthy tuples. 

Proposition 2 If ta is the parent of tb , tb is the parent of tc , 

then ta is the parent of tc. 

Proposition 3 All the parent tuples of a faulty tuple are 

faulty tuples. 

Proposition 4 All the child tuples of a healthy tuple are 

healthy tuples. 

Note: these definitions and propositions give us an ideal 

framework to identify the minimal faulty tuple, which assume 

that the SUT is deterministic software and a test configuration 

contains a faulty tuple must result in a failure during testing. 

III. FAILURE-INDUCING COMBINATIONS  IDENTIFYING MODEL 

We will introduce our failure-inducing identifying model 

with an example SUT. The SUT consists of 4 parameters, each 

having 3 values. We generated a 2-way covering array to test 

this SUT. The 2-way covering array and the test results are 

listed in Table II. 

TABLE II.  EXECUTED TEST CONFIGURATIONS  

No. Test configuration Result 

1 1 1 1 1 Pass 

2 1 2 2 2 Pass 

3 1 3 3 3 Pass 

4 2 1 2 3 Pass 

5 2 2 3 1 Fail 

6 2 3 1 2 Pass 

7 3 1 3 2 Pass 

8 3 2 1 3 Pass 



No. Test configuration Result 

9 3 3 2 1 Pass 

A. Constructing TRT 

First, we construct a TRT for a failing test configuration. A 

TRT is a tree in which each node represents a tuple in the 

failing test configuration and each edge represents a direct 

parent and child relation from one node to another node.  

For instance, for the failing configuration (2, 2, 3, 1) in 

Table II, the TRT is shown in figure 1. 

Fig. 1.  TRT for (2,2,3,1) 

B. Initial known  tuples 

In fact, some tuples in a TRT can be easily determined to be 

faulty tuple or healthy tuple from the results of the executed 

test configurations. Thus we do not need to generate extra test 

configurations to analyze them. We can determine the type of a 

tuple using static review as follows: 

First, the root tuple in a TRT must be a faulty tuple. This is 

because all the possible test configurations contain the root 

tuple is original configuration, which failed during testing. So it 

is a faulty tuple by definition. We mark the root tuple as a 

faulty tuple. Second, tuples that appear in one or more passed 

test configurations are healthy tuples by definition. We mark 

such tuples as healthy tuples.  

After the above steps, the TRT evolves as shown in Figure 

2, where dark nodes represent faulty tuples, grey nodes 

represent healthy tuples, and white nodes represent unknown 

tuples. 

Fig. 2.   TRT after initial process 

C. Identifying process 

Having derived the TRT, there still remain many unknown 

tuples. We need to determine which class they belong to 

respectively, i.e., (faulty tuple or healthy tuple) to identify the 

minimal faulty tuples. We will make the following assumption 

to facilitate the process of determining unknown tuples in the 

TRT: 

Assumption: The generated extra test configuration will 

not introduce new faulty tuples. (This assumption may not 

always be true. This will be discussed further in the next 

section.) 

Based on this assumption, we will get the following lemma. 

Lemma 1: For a tuple, we generate an extra test 

configuration that contains this tuple. If the extra test 

configuration passes, then this tuple is a healthy tuple. If the 

extra test configuration fails, then the tuple is a faulty tuple. 

Proof. According to Definition 2, it is obvious that this 

tuple is a healthy tuple when the extra test configuration passes. 

When the extra configuration fails, this is a faulty tuple (or 

there exists no faulty tuple and this test configuration would not 

fail because the assumption says that this extra configuration 

will not introduce new faulty tuples). ▌ 
With this lemma, the process of determining all the 

unknown tuples is also very straightforward that we will just 

take the followed example to illustrate it. Consider the TRT in 

Fig 2. the remaining unknown tuples are: [2,2,3,-],[2,2,-,1],[2,-

,3,1],[-,2,3,1],[2,2,-,-],[2,-,3,-],[2,-,-,1], [-,2,3,-],[-,2,-,1],[-,-,3,1]. 

We first select the tuple [2,2,3,-] to be analyzed (the order in 

which tuples are selected from the remaining unknown tuples 

will be discussed later). We generate an extra test configuration 

(2,2,3,2) for the tuple [2,2,3,-]. Let’s assume that this test fails 

during testing, which  we subsequently label this tuple as a 

faulty tuple. We also label all its parent tuples to be faulty 

tuples. However, it has only one parent tuple in the TRT, which 

is [2,2,3,1] and has been labeled to be a faulty tuple in the 

initial step. So we skip this step. Next we select the tuple [2,2,-

,-], and find this tuple is a healthy tuple after we generate a test 

configuration (2,2,1,2) which is assumed to pass during testing. 

We also label all its child tuples to be healthy tuples. This 

process continues until there are no unknown tuples.  

TABLE III.  IDENTIFYING EXAMPLE 

Iterat

ion 
Selected tuple Extra Test Result Additional tuples 

1 [2,2,3,-] (2,2,3,2) faulty  - 

2 [2,2,-,-] (2,2,1,2) healthy - 

3 [2,2,-,1] (2,2,1,1) healthy [2,-,-,1], [-,2,-,1] 

4 [2,-,3,1] (2,1,3,1) faulty - 

5 [2,-,3,-] (2,1,3,2) faulty - 

6 [-,2,3,1] (1,2,3,1) faulty - 

7 [-,2,3,-] (1,2,3,2) healthy - 

8 [-,-,3,1] (1,1,3,1) healthy - 

The details of our selection process are listed in table III. 

Column “Selected tuple” shows the tuple selected for this 

iteration, column “Extra Test” shows the extra test 

configuration that contains the selected tuple. Column “Result” 

shows our analysis result, i.e., whether the selected tuple is a 

healthy or faulty tuple. The last column “Additional tuples” 

shows the additional parent or child tuples of this selected tuple 

which can be determined according to Propositions 3 and 4. 

Fig. 3.  TRT after identifying process 

2  2  3  1

2  2  3  - 2  2  -  1 2  -  3  1 -  2  3  1

2  2  -  - 2  -  3  - 2  -  -  1 -  2  3  - -  2  -  1 -  -  3  1

2  -  -  - -  2  -  - -  -  3  - -  -  -  1

2  2  3  1

2  2  3  - 2  2  -  1 2  -  3  1 -  2  3  1

2  2  -  - 2  -  3  - 2  -  -  1 -  2  3  - -  2  -  1 -  -  3  1

2  -  -  - -  2  -  - -  -  3  - -  -  -  1

2  2  3  1

2  2  3  - 2  2  -  1 2  -  3  1 -  2  3  1

2  2  -  - 2  -  3  - 2  -  -  1 -  2  3  - -  2  -  1 -  -  3  1

2  -  -  - -  2  -  - -  -  3  - -  -  -  1



Figure 3 shows the updated TRT. As all the unknown 

tuples in the TRT are determined, we can easily find the 

minimal faulty tuples according to Definition 4, i.e. [2,-,3,-] 

and [-,2,3,1]. 

D. Tuple Selection strategy 

It is important to note that the selection of an unknown 

tuple from the remaining unknown tuples has a significant 

impact on the efficiency of our approach. This is particularly so 

when there are still many unknown tuples to be analyzed in the 

TRT. Our selection strategy aims at minimizing the number of 

extra test configurations. Before we describe this strategy, we 

present the following definitions:  

Definition 6 A path is a sequence of tuples in a TRT in 

which every tuple is the direct parent of the tuple that follows. 

For example, [2,2,3,1]→[2,2,3,-]→[2,-,3,-]→[2,-,-,-] is a path. 

Moreover, a path is said to be an unknown path if every 

tuple in this path is an unknown tuple. A path is said to be the 

longest unknown path when this path is an unknown path that 

has the maximum number of tuples in the TRT. 

The selection strategy is described in Algorithm 1. In this 

algorithm, variable lastChosen represents the last chosen tuple, 

while the currentPath stores a path of the TRT. The variables 

head, middle, and tail are the indexes of the tuples in 

currentPath. All these variables are member variables owned 

by the TRT. 

Our selecting strategy has two main steps: Greedy step and 

binary search step. For the first step, we will choose a longest 

unknown path from the TRT. The idea behind this step is to 

enable us to determine as many unknown tuples as possible. 

There are two conditions that we need to apply in order to 

determine the longest unknown path, i.e., reset the currentPath 

(line 9): 1) The last chosen tuple is null, which means our 

select function is invoked for the first time; 2) The index head 

is greater than tail, which means that all the tuples in the 

current path have been determined. After getting a new longest 

unknown path (line 9), our select function let head point to the 

first tuple of path and tail point to the last tuple of path (line 10 

~11). Furthermore, we let the middle index point to the first 

tuple of path (line 10). The reason why we first let the middle 

point to the first tuple of the path is that we can determine as 

soon as possible if the path has faulty tuples. For example, 

consider a path [1,1,1,1,-]→[1,1,1,-,-]→[-,1,1,-,-]→[-,1,-,-,-]. We 

first let middle point to [1,1,1,1,-]. If it is a healthy tuple, then 

we immediately determine that there are no faulty tuples in this 

path. 

For the second main step, we choose binary search to get a 

tuple to be tested from the currentPath. As we know, the tuples 

in the currentPath is sorted according to their relationships, i.e., 

every tuple is the direct parent of the tuple that follows. Such 

that if we have determined one tuple in the path, the tuples 

before this selected tuple or after this selected tuple will also be 

determined. So we use binary search to choose this tuple so that 

we can minimize the number of extra test configurations (O 

(log2 n)) that is used to determine all the tuples in the 

currentPath. The details are as follow: we first determine if the 

last chosen tuple is null (line 2). If not, we change the index of 

tail or head to ensure the tuples between tail and head are all 

unknown tuples. When the last tuple is a healthy tuple, all the 

subsequent tuples are healthy tuples. Thus the process will let 

tail point to the tuple before middle (line 3 ~ 4). If the last tuple 

is a faulty tuple, then the tuples before it are faulty tuples. So 

the process will let the head point to the tuple after the middle 

(line 5 ~ 6). Based on the binary search method, set the middle 

index to point to the middle tuple that is between the tail and 

head (line 7). At the end, we return the tuple which middle 

points to in the currentPath and set it to be the last chosen tuple 

for the next iteration (lines 12~13).   

 Algorithm 1  select  strategy 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

define select(): 

      if  lastChosen != null: 

           if lastChosen.isHealthy: 

                 tail = middle – 1 

           elseif  lastChosen.isFaulty: 

                 head = middle+1 

            middle = ( head + tail )/2 

     if  lastChosen == null || tail  < head: 

            currentPath = get_longest_path() 

            head = middle = 0 

            tail = currentPath.size – 1 

lastChosen = currentPath[middle] 

return lastChosen 

The following example shows how our strategy works: 

Assume that we have a failing configuration (1, 1, 1, 1, 1, 1, 

1, 1). Also assume that we do not have any information about 

other test configurations. We construct the TRT for this 

configuration, and initialize the root tuple to be a faulty tuple. 

Next, our selection process starts. We get a longest 

unknown path first: 

[ 1 , 1 , 1 , 1 , 1 , 1 , 1 , - ]→[ 1 , 1 , 1 , 1 , 1 , 1 , - , - ]→[ 1 , 

1 , 1 , 1 , 1 , - , - , - ]→[ 1 , 1 , 1 , 1 , - , - , - , - ]→[ 1 , 1 , 1 , - , - , 

- , - , - ]→[ 1 , 1 , - , - , - , - , - , - ]→[ 1 , - , - , - , - , - , - , - ]. 

And then we choose the first tuple: [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , -

 ] to be analyzed. We generated an extra test configuration (1 , 

1 , 1 , 1 , 1 , 1 , 1 , 0), which is assumed to fail. So we label this 

tuple to be a faulty tuple. We also label all its parent tuples to 

be faulty tuples. For this particular tuple, the only parent tuple 

is the root tuple [1 , 1 , 1 , 1 , 1 , 1 , 1 , 1], which is already 

labeled to be a faulty tuple. 

As the last chosen tuple is a faulty tuple, then we select the 

tuple [1 , 1 , 1 , 1 , - , - , - , - ], We generate an extra 

configuration (1 , 1 , 1 , 1 , 0 , 0 , 0 , 0), which is assumed to 

pass. We label this tuple and all its child tuples to be healthy 

tuples, which include the following tuples: [ 1 , 1 , 1 , - , - , - , - , 

- ] , [ 1 , 1 , - , - , - , - , - , - ] ,[ 1 , - , - , - , - , - , - , - ] in the path. 

The next tuple chosen is [ 1 , 1 , 1 , 1 , 1 , 1 , - , - ]. As the 

last chosen tuple is a healthy tuple. It is also determined to be a 

healthy tuple. We label this tuple and all its child tuples to be 

healthy tuples (including the last unknown tuple in this path: 

[ 1 , 1 , 1 , 1 , 1 , - , - , - ]). As all the tuples in the path are 

determined, we get a new longest unknown path. If there are 

more than one longest unknown path, we select one of them 

arbitrarily. In this example, we get the following longest 

unknown path: 



[ 1 , 1 , 1 , 1 , 1 , - , 1 , 1 ]→[ 1 , 1 , 1 , 1 , 1 , - , 1 , - ]→[ 1 , 

1 , 1 , 1 , - , - , 1 , - ]→[ 1 , 1 , 1 , - , - , - , 1 , - ]→[ 1 , 1 , - , - , - , 

- , 1 , - ]→[ 1 , - , - , - , - , - , 1 , - ]→[ - , - , - , - , - , - , 1 , - ]. 

We repeat the above process until all the tuples in the TRT 

are all determined. Our complete process for this example is 

listed in table IV. At the end of this process, we find the 

minimal faulty tuple is the tuple [ 1 , - , - , - , - , - , 1 , - ]. 

TABLE IV.  SELECTING EXAMPLE 

Path 

[ 1 , 1 , 1 , 1 , 1 , 1 , 1 , - ]→[ 1 , 1 , 1 , 1 , 1 , 1 , - , - ]→[ 1 , 

1 , 1 , 1 , 1 , - , - , - ]→[ 1 , 1 , 1 , 1 , - , - , - , - ]→[ 1 , 1 , 1 , 
- , - , - , - , - ]→[ 1 , 1 , - , - , - , - , - , - ]→[ 1 , - , - , - , - , - , 

- , - ]. 

No. Selecting tuple Result 

1 [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , - ] Faulty 

2 [ 1 , 1 , 1 , 1 , - , - , - , - ] Healthy 

3 [ 1 , 1 , 1 , 1 , 1 , 1 , - , - ] Healthy 

Path 

[ 1 , 1 , 1 , 1 , 1 , - , 1 , 1 ]→[ 1 , 1 , 1 , 1 , 1 , - , 1 , - ]→[ 1 , 

1 , 1 , 1 , - , - , 1 , - ]→[ 1 , 1 , 1 , - , - , - , 1 , - ]→[ 1 , 1 , - , 
- , - , - , 1 , - ]→[ 1 , - , - , - , - , - , 1 , - ]→[ - , - , - , - , - , - , 

1 , - ]. 

No. Selecting tuple Result 

4 [ 1 , 1 , 1 , 1 , 1 , - , 1 , 1 ] Faulty 

5 [ 1 , 1 , 1 , - , - , - , 1 , - ] Faulty 

6 [ 1 , - , - , - , - , - , 1 , - ] Faulty 

7 [ - , - , - , - , - , - , 1 , - ] Healthy 

Path 

[ 1 , 1 , 1 , 1 , 1 , 1 , - , 1 ]→[ 1 , 1 , 1 , 1 , 1 , - , - , 1 ]→[ 1 , 

1 , 1 , 1 , - , - , - , 1 ]→[ 1 , 1 , 1 , - , - , - , - , 1 ] →[ 1 , 1 , - , 

- , - , - , - , 1 ]→[ 1 , - , - , - , - , - , - , 1 ]→[ -, - , - , - , - , - , -
 , 1 ] 

No. Selecting tuple Result 

8 [ 1 , 1 , 1 , 1 , 1 , 1 , - , 1 ] Healthy 

Path 

[ - , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]→[ - , 1 , 1 , 1 , 1 , 1 , 1 , - ]→[ - , 

1 , 1 , 1 , 1 , - , 1 , - ]→[ - , 1 , 1 , 1 , - , - , 1 , - ]→[ - , 1 , 1 , 
- , - , - , 1 , - ]→[ - , 1 , - , - , - , - , 1 , - ] 

No. Selecting tuple Result 

9 [ - , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] Healthy 

E. Removal of the assumption 

By far our identifying process is based on the fundamental 

assumption that the generated extra test configuration will not 

introduce new faulty tuples. Since this assumption is not 

always true, we present a preliminary solution to eradicate such 

an assumption in this section. For ease of reference, we refer to 

the assumption as “TRT assumption”. 

As we know, in our previously approach, we just use one 

extra test configuration to test the selected tuple. We can see 

that if the extra test configuration passes, this tuple is surely a 

healthy tuple, but if it fails, this tuple is not deterministic a 

faulty tuple. This is because based on definition only when we 

make sure every possible test configurations which contain the 

selected tuple will fail can we determine this tuple is a faulty 

tuple. However, having an exhaustive testing of all these test 

configurations is too costly and not practical. So we should 

make a tradeoff by restricting the number of extra test 

configurations for determining a faulty tuple. It is obviously 

that the more the number of test configurations for determining 

a faulty tuple, the higher probability that a tuple may be faulty, 

which lead to higher cost in identifying failure-inducing tuples.  

In the extreme case, a tuple is deterministic to be a faulty tuple 

when this value is equal to the number of the possible test 

configurations contain this tuple. Conversely, the less the 

number of test configurations for determining a faulty tuple, the 

less probability that this tuple is a faulty tuple, which leads to  

less cost needed to identify failure-inducing tuples. Notably, 

the extreme case of this situation is that we only take one extra 

test configuration to determine a faulty tuple, which turns into 

our previously algorithm. Due to space limitation, we will not 

discuss how to determine the best number of test configurations 

for a SUT to determine a faulty tuple in this paper. 

Our augmented approach without the TRT assumption is 

shown in Algorithm 2. Similar to the algorithm with the TRT 

assumption in place, this approach also needs to determine 

whether there exists any tuple which is still unknown in the 

TRT (line 2), select a tuple from the unknown tuples (line 3), 

generate  and execute an extra test configuration that contains 

this tuple (line 5 ~6). The difference is that this approach uses 

two new variables: num_needed and tempSuite. The former 

indicates  the number of extra test configurations needed to 

determine a faulty tuple and the latter records the failing extra 

test configurations generated for the current tuple that need to 

be analyzed.  

 If the current extra test configuration fails (line 7), we add 

this test configuration in the tempSuite (line 8). Then we will 

evaluate whether the number of test configurations in tempSuite 

is less than num_needed. If so, generate a new test 

configuration and execute it for the next iteration (line 10~11). 

Otherwise, we break the loop (line 13). If the number of test 

configurations in the tempSuite is less than num_needed , 

which means that this tuple is a healthy tuple, we will set this 

tuple and all its child tuples to be healthy tuples (line 15 ~17). 

Furthermore, although the tuple may be considered as a healthy 

tuple, some extra test configurations recorded in the tempSuite 

may fail during testing. As a result, it indicate that these test 

configurations introduced new faulty tuples (otherwise, there 

will exist no faulty tuple, and these test configurations would 

pass). We recursively use this approach to analyze the failing 

test configurations in the tempSuite to find these introduced 

failure-inducing tuples (line 18~19). If the number of test 

configurations in tempSuite is greater than num_needed, which 

means that this tuple is a faulty tuple, we will set this tuple and 

all its parent tuples to be faulty tuples (line 21 ~23). 

 We present a simple example to show how our 

identification approach without TRT assumption works: 

For a failing test configuration (1,1,1), let num_needed = 3. 

We first consider the tuple [1,1,-]. We generate a test 

configuration (1,1,2), which is assumed to fail. We continue to 

generate another test configuration (1,1,3), which is also 

assumed to fail. As the number of test configurations in 

tempSuite is still less than num_needed, so we continue to 

generate the next test configuration (1,1,4), and assume that it 

fails again. Now the number of test configurations in tempSuite 

is 3, which is equal to num_needed. This means that this tuple 

is a faulty tuple. We repeat our process until there are no 

unknown tuples in the TRT. 



 It is important to note that when the tuple is evaluated to be 

a healthy tuple, but some extra test configurations containing 

this tuple fail during testing, we should recursively identify 

these extra test configurations to find new failure-inducing 

tuples.  For example, when we analyze the tuple [1,-,1],we 

generate two configurations (1,2,1), (1,3,1). Assume that the 

former fails and the later passes. As (1,3,1) passes, [1,-,1] is a 

healthy tuple, and then we should recursively analyze 

configuration (1,2,1) to find  new failure-inducing tuples.  

Our complete identifying process is listed in table V. The 

minimal faulty tuples are  [1,1,-],[-2,1],[2,1,-] and [3,1,-]. 

TABLE V.  WITHOUT TRT ASSUMPTION EXAMPLE 

test configuration            (1,1,1) 

No. Tuple Select Generate Configurations 

1 [1,1,-] (1,1,2)  fail (1,1,3) fail (1,1,4) fail 

2 [1,-,-]   (1,2,2)  pass - - 

3 [1,-,1] (1,2,1)  fail  (1,3,1) pass - 

4 [-,1,1]  (2,1,1)  fail (3,1,1) fail (4,1,1) pass 

test configuration            (1,2,1) 

No. Tuple Select Generate Configurations 

5 [-,2,1] (2,2,1) fail (3,2,1) fail (4,2,1) fail 

test configuration            (2,1,1) 

No. Tuple Select Generate Configurations 

6 [2,1,-] (2,1,2)  fail (2,1,3) fail (2,1,4) fail 

7 [2,-,-]   (2,2,2)  pass - - 

8 [2,-,1] (2,3,1)  pass - - 

test configuration            (3,1,1) 

No. Tuple Select Generate Configurations 

9 [3,1,-] (2,2,1) fail (3,2,1) fail (4,2,1) fail 

10 [3,-,-]   (3,2,2)  pass - - 

11 [3,-,1]  (3,3,1) pass - - 

IV. EVALUATION 

The goal of this section is to assess the performance of our 

appoach. Specifically, we present several experiments that are 

designed to answer the following questions: 

Q1. Is our approach efficient compared with existing 

methods? 

Q2. How effective does our approach deal with the 

overlapping faulty tuple?  

Q3. How well does our approach deal with the newly 

introduced failure-inducing tuples? 

Q4.  Can our approach identify the failure-inducing 

combinations in the real software? 

In the following experiments, we compare to an existing 

method, namely FIC_BS, which is stated to perform the best 

among the existing methods [4]. We set the variable 

num_needed of Algorithm 2 to 3. 

A. Comparison with existing methods 

To compare with method FIC_BS, we used five SUTs as 

our experimental subjects. The numbers of the parameters for 

these SUTs are 8, 9, 10, 11, and 12 respectively. For each SUT 

we conducted the following two groups of experiments: 

1) In the first group of experiments, we assume that a 

failing test configuration of a SUT only contains a single t-size 

(t = 2, 3, 4) faulty tuple. 

 For example, the failing test configuration (1, 2, 2, 2, 1, 1, 

2, 3) of the first SUT only contains a faulty tuple [1,2,-,-,-,-,-,-], 

other tuples in this configuration are healthy tuples. In fact, 

there are tCm
(m = 8, 9, 10, 11, 12; t = 2, 3, 4) possible tuples of 

this kind in a failing configuration. 

When embedding a single faulty tuple in a SUT, e.g., 

embedding a faulty tuple [1,1,-,-,-,-,-,-] in the first SUT, we 

give a failing test configuration as the input to the algorithm, 

for example: (1,1,1,1,1,1,1,1). To be fair, we do not give any 

information about other test configurations. Then we identify 

the embedded faulty tuple in the failing test configuration with 

our approach with TRT assumption (labeled as PATH), our 

augmented approach without TRT assumption (labeled as 

PATH _NA) and FIC_BS respectively. We record the extra test 

configurations they generated through the process of 

identifying the embedded faulty tuple.  

We successively change the single faulty tuple embedded in 

the SUT from the tCm
 tuples and record the extra test 

configurations generated by the three algorithms in each 

iteration. Table VI lists the average extra configurations that 

have to be executed by each algorithm in the column titled 

“Average extra test configurations”. 

In addition to the average extra test configurations, there is 

another factor to check: the number of tuples in the TRT that 

are determined by each approach. Our two approaches—PATH 

and PATH_NA determined all the tuples in the TRT, but this is 

not the case for the FIC_BS. We should compute the number of 

the tuples in the TRT that are determined by FIC_BS. We list 

Algorithm 2  Identifying  process without TRT assumption 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

define identify_NA(TRT): 

    while TRT.unknown_tuples != ∅: 

        tuple  =  TRT.select(unknown_tuples) 

        tempSuite  = [] 

        test_config = gen_extra(tuple) 

        result =  exec(test_config) 

        while result == fail : 

              tempSuite.append(test_config) 

              if  numberOf(tempSuite) < num_needed : 

test_config = gen_extra(tuple) 

                    result =  exec(test_config) 

              else : 

                    break 

        if  numberOf(tempSuite) < num_needed : 

              TRT.set(tuple,healthy) 

              for each_child of tuple: 

                          TRT.set(each_child, healthy) 

                    for each_test_config  of  tempSuite: 

                          identify_NA(TRT(each_test_config)) 

             else : 

               TRT.set(tuple,faulty) 

               for each_father of tuple: 

                    TRT.set(each_father, faulty) 



the average covered number of tuples in TRT in the column 

with name “Average covered tuples” of Table VI.  

We measure the efficiency of a method using the result 

obtained by dividing the number of extra test configurations by 

the coverage of tuples in the TRT. Table VI lists the average 

efficiency in the column with name “Efficiency”. 

2) In the second group of experiments, we assume that a 

failing test configuration of a SUT contains two t-size (t = 2, 3, 

4) faulty tuples, and the two tuples do not overlap. 

For example, assume that tuple (1, 2, 2, 2, 1, 1, 2, 3) of the 

first SUT contains two faulty tuples: [1,2,-,-,-,-,-,-] and [-,-,-,2,-

,1,-,-]. These two tuples do not overlap.  

When embedding two faulty tuples that do no overlap in a 

SUT, we identify the two faulty tuples with three approaches. 

As in the first group of experiments, we record the number of 

generated extra configurations, covered tuples, and efficiency.  

We then successively change the two faulty tuples having 

no overlapped part embedded in the SUT. After running all the 

cases, we list the average of extra configurations, covered 

tuples and efficiency of each algorithm in table VII. 

TABLE VI.  COMPARING RESULT OF SINGLE FAULTY TUPLE  

SUT t 
Average extra test configurations Average covered tuples Efficiency 

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS 

1 

2 10.8 23.8 9.0 255 255 163.3 23.7 10.7 18.2 

3 12.4 25.7 12.0 255 255 140.4 20.5 9.9 11.5 

4 12.7 23.9 14.9 255 255 147.5 20.1 10.7 9.7 

2 

2 11.3 24.7 9.6 511 511 318.8 45.1 20.7 33.2 

3 13.7 27.9 12.9 511 511 263.8 37.4 18.3 20.0 

4 14.9 28.8 16.1 511 511 269.8 34.3 17.7 16.4 

3 

2 11.8 26.2 9.9 1023 1023 624.6 86.7 39.0 63.1 

3 14.2 29.4 13.3 1023 1023 500.0 72.0 34.8 36.8 

4 16.0 31.4 16.7 1023 1023 498.4 64.0 32.5 29.0 

4 

2 13.2 30.1 10.3 2047 2047 1227.6 155.3 68.0 120.1 

3 15.2 32.3 13.8 2047 2047 954.5 134.2 63.4 68.0 

4 17.0 34.1 17.3 2047 2047 928.8 120.2 60.0 52.4 

5 

2 13.7 31.3 10.4 4095 4095 2419.2 299.6 130.7 232.4 

3 16.7 36.2 14.1 4095 4095 1832.6 246.7 113.0 127.9 

4 18.2 37.3 17.7 4095 4095 1743.6 225.0 109.7 96.0 

TABLE VII.  COMPARING RESULT OF TWO NON OVERLAPPING FAULTY TUPLES  

SUT t 
Average extra test configurations Average covered tuples Efficiency 

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS 

1 

2 25.0 55.7 17.2 255 255 158.0 10.2 4.6 9.2 

3 34.0 66.8 21.7 255 255 119.5 7.5 3.8 5.5 

4 41.0 72.5 24.2 255 255 111.6 6.2 3.5 4.6 

2 

2 27.0 58.9 17.9 511 511 307.2 18.9 8.7 17.1 

3 39.6 78.4 23.3 511 511 221.7 12.9 6.5 9.4 

4 48.0 85.3 27.6 511 511 198.0 10.6 6.0 7.1 

3 

2 28.6 63.5 18.6 1023 1023 600.7 35.8 16.1 32.3 

3 42.6 85.0 24.4 1023 1023 416.4 24.0 12.0 17.0 

4 54.6 99.7 29.4 1023 1023 356.7 18.7 10.3 12.0 

4 

2 31.0 69.7 19.9 2047 2047 1179.5 65.9 29.4 59.6 

3 46.1 93.7 25.5 2047 2047 790.2 44.4 21.8 30.9 

4 59.1 110.2 31.0 2047 2047 651.4 34.6 18.6 20.8 

5 

2 34.0 77.7 20.3 4095 4095 2323.8 120.4 52.7 114.8 

3 49.3 101.5 26.9 4095 4095 1512.2 83.1 40.4 56.0 

4 63.5 120.5 32.1 4095 4095 1203.3 64.4 34.0 37.1 

From the results in Table VI and Table VII, we get the 

followed conclusions: 

Firstly, we can observe that the efficiency of the approaches 

(PATH, PATH_NA and FIC_BS) decreases with the increase 



of t for each SUT. And the efficiency increases with the 

increase of the size, i.e., the number of parameters, of SUT. 

What’s more, comparing the results of Table VI and Table 

VII, we can see the efficiency of identifying the failure-

inducing combinations of SUT with a single faulty tuple is 

higher than those with two faulty tuples, which means that 

more effort is needed to identify the additional faulty tuple in 

the failing test configuration. 

Thirdly, we can observe that although the algorithm—

FIC_BS needs smaller test configurations in most cases (there 

exists some cases where the FIC_BS approach requires more 

test configurations than our path approach, that is when t = 4, 

SUT from 1to 4 in the Table VI). Note that such cases only 

cover a small number of tuples in the TRT. As a result, the 

efficiency of FIC_BS is poorer than our first approach—PATH 

in all cases as shown in Table VI and Table VII.  

Lastly, the efficiency of the augmented approach—

PATH_NA is poorer than PATH and FIC_BS. This is because 

this approach needs more extra test configurations to determine 

a tuple than the other two approaches, so that it can achieve 

better performance under the condition when new faulty tuples 

may be introduced in the generated test configurations. 

B. Handling Overlapping faulty tuples 

In the following experiments, we use the same SUTs in the 

previous section. To see how well our approach handles the 

case when a failing test configuration contains multiple faulty 

tuples that overlap, we design the following experiment: 

We assume that a failing test configuration contains two t-

size (t = 2, 3, 4) faulty tuples, and the two tuples overlap. 

For example, (1, 2, 2, 2, 1, 1, 2, 3) contain two faulty tuples: 

[1,2,2,-,-,-,-,-] and [-,-,2,2,-,1,-,-], the third parameter value of 

the first tuple and the first parameter value are the same. 

When embedding two overlapping faulty tuples in a SUT, 

we identify the two embedded faulty tuples with the three 

approaches. We also record their generated average extra 

configurations, covered tuples in the TRT and the efficiency, 

similar to the previous experiments.  In addition, we record the 

number of failure-inducing tuples that the three approaches 

identified in the column titled “failure-inducing tuples 

identified”. 

We successively change the two different faulty tuples 

embedded in the SUT. After running all the cases, we list the 

average number of extra configurations, covered tuples, 

efficiency and the number of identified failure-inducing tuples 

of each algorithm in Table VIII. 

TABLE VIII.  COMPARING RESULT OF TWO OVERLAPPING FAULTY TUPLES  

SUT t 
Average extra test configurations Average covered tuples in TRT Efficiency failure-inducing tuples identified 

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS 

1 

2 17.4 41.7 8.5 255 255 149.3 14.6 6.1 17.6 2 2 1 

3 22.6 48.5 11.4 255 255 113.5 11.3 5.3 9.9 2 2 1 

4 24.5 48.9 14.2 255 255 114.0 10.4 5.2 7.9 2 2 1 

2 

2 18.3 43.1 9.0 511 511 293.1 27.9 11.8 32.8 2 2 1 

3 26.2 56.4 12.1 511 511 212.6 19.5 9.1 17.3 2 2 1 

4 29.7 58.8 15.3 511 511 203.2 17.2 8.7 13.0 2 2 1 

3 

2 19.1 45.4 9.4 1023 1023 577.4 53.5 22.5 62.0 2 2 1 

3 28.0 60.4 12.6 1023 1023 402.6 36.5 16.9 31.7 2 2 1 

4 34.7 70.1 15.8 1023 1023 367.6 29.5 14.6 22.8 2 2 1 

4 

2 20.7 49.9 9.8 2047 2047 1140.6 98.9 41.0 118.0 2 2 1 

3 30.4 66.5 13.1 2047 2047 769.1 67.3 30.8 58.2 2 2 1 

4 38.6 78.6 16.5 2047 2047 673.9 53.1 26.1 40.1 2 2 1 

5 

2 22.4 54.5 10.0 4095 4095 2257.7 183.1 75.1 227.8 2 2 1 

3 32.8 72.6 13.4 4095 4095 1480.0 124.7 56.4 109.4 2 2 1 

4 42.1 86.7 16.9 4095 4095 1249.1 97.2 47.2 72.3 2 2 1 

From the results in Table VIII, we find that our two 

approaches identified all the two failure-inducing tuples with 

overlap part while FIC_BS only found one faulty tuple of the 

two failure-inducing tuples in all cases.  

From the previous section, we knew that the efficiency of 

identifying single faulty tuple is higher than identifying two 

faulty tuples. Importantly, even though our approach identified 

two faulty tuples while FIC_BS identified only one, our 

approach, PATH, still manage to achieve higher efficiency than 

FIC_BS in most cases (except the cases when t is 2).  

Furthermore, compared with Table VII, we find the 

efficiency of identifying the overlapping tuples is higher than 

identifying the tuples that do not overlap. In other words, our 

approaches have a better performance at identifying failure-

inducing tuples with overlapped part.  

C. Handling newly introduced faulty tuples 

We use the same five SUTs in the previous section. To see 

how well our approach handles the case where the generated 

extra test configurations could contain newly introduced 

failure-inducing tuples, we design the following experiment: 



We inject two faulty tuples in the SUT. One must be 

contained in the test configuration under analysis; another must 

not be exist in the test configuration.  

For example: for the test configuration (1, 1, 1, 1, 1, 1, 1, 1) 

of the first SUT, we inject a faulty tuple [1,1,-,-,-,-,-,-] which is 

contained in this test configuration, and another faulty tuple [-

,2,2,-,-,-,-,-] which is not contained in the test configuration. 

We use two-level, nested loops to generate two faulty 

tuples and identify them using three approaches. The first level 

layer loop is to successively select a t-size (t = 2,3,4) faulty 

tuple from the  test configuration under analysis. In the second 

level loop, we first generate a random test configuration which 

is different from the original test configuration at each 

parameter, say, (3,2,2,2,3,2,2,3), and then successive select a 2-

way faulty tuple from the newly generated test configuration. 

After two tuples are embedded in the SUT, we identify them 

using the three approaches, and then record the number of 

correctly identified faulty tuples which is contained in the test 

configuration. In addition, we recorded the number of newly 

introduced faulty tuples identified and the incorrectly identified 

faulty tuples, which are neither the first embedded faulty tuple 

nor the second embedded faulty tuple. 

Table IX shows, for each approach, the total number of 

correctly identified faulty tuples, the total number of newly 

introduced faulty tuples identified and the total number of the 

incorrectly identified faulty tuples in columns named “correctly 

Identified tuples”,” new imported faulty tuples Identified” and 

“incorrectly Identified tuples”, respectively. 

TABLE IX.  RESULT OF IDENTIFYING NEW IMPORTED FAILURE-INDUCING TUPLE  

SUT t 

correctly Identified tuples new imported faulty tuples Identified incorrectly Identified tuples  

PATH PATH _NA FIC_BS PATH PATH _NA FIC_BS 
PAT

H 
PATH _NA FIC_BS 

1 

2 601 784 364 0 241 0 364 0 420 

3 1173 1568 728 0 618 0 478 0 840 

4 1736 1960 1260 0 297 0 245 0 700 

2 

2 1170 1296 1080 0 189 0 190 0 216 

3 2720 3024 2520 0 478 0 362 0 504 

4 3190 4536 1890 0 2396 0 1607 0 2646 

3 

2 1777 2025 1575 0 410 0 495 0 450 

3 4182 5400 2880 0 2053 0 1625 0 2520 

4 7569 9450 6300 0 3350 0 2156 0 3150 

4 

2 2688 3025 2475 0 710 0 913 0 550 

3 6691 9075 4455 0 4194 0 4455 0 4620 

4 12363 18150 8910 0 11466 0 7635 0 9240 

5 

2 3579 4356 2970 0 1252 0 1255 0 1386 

3 10663 14520 8360 0 7119 0 5298 0 6160 

4 23943 32670 18810 0 22370 0 
1422

5 
0 13860 

The results in Table IX suggest that only our approach—

PATH_NA can identify the newly introduced failure-inducing 

tuples. Furthermore, only PATH _NA did not identify faulty 

tuples incorrectly, which means that this approach is not 

affected by the newly introduced faulty tuples, while the other 

two approaches: PATH and FIC_BS are affected by the newly 

introduced faulty tuples. 

D. Handling failure-inducing combinations in real software 

We used a module of the Traffic Collision Avoidance 

System (TCAS) benchmark as our real software testing subject 

(available at [14]), The module is part of a set of C programs 

that has been used in other evaluations of software testing 

methods [13], [15]. 

The program has 12 input parameters and one output 

parameter. To make model checking feasible, we use the same 

partitioned equivalence classes of each parameter as [15] ,We 

can model this input configuration as SUT( 3 , 2 , 2 , 2 , 2 , 2 , 

4 , 10, 10, 3, 2, 2).  

We get 5 faulty versions of the TCAS by manually seeding 

realistic faults into the correct version. And for a test 

configuration, the testing result is determined by comparing the 

executed result of the correct version and faulty version. We 

induce a failing test configuration as the input of each 

algorithm, and make analysis of the results obtained. 

Before testing, we manually identify the actually failure-

inducing combinations of each incorrectly version of TCAS 

through code inspection, which are those combinations of input 

configurations which will make the result of the corresponding 

incorrectly version of TCAS differ from the correct version. 

The result is listed in table X.The column with the field 

name  ”Version”  means the faulty verstion of the TCAS, and 

column “All” shows the actually number of failure-inducing 

combinations in this version of TCAS. The remaining columns 

show the results of each algorithm, the sub column with 

name ”R” shows the number of correctly indentified failure-

inducing combintions, and the sub column ”W” shows the 

number of incorrectly identified combinations.    



TABLE X.  RESULT OF IDENTIFIED REALISTIC FAILURE-INDUCING 

COMBINATIONS IN REAL SOFTWARE 

Version All 
PATH PATH _NA FIC_BS 

R W R W R W 

1 2 2 0 2 0 1 0 

2 2 1 1 2 0 1 0 

3 1 1 0 1 0 1 0 

4 3 0 1 3 0 1 0 

5 4 2 0 2 0 0 1 

Total 12 6 2 10 0 4 1 

We find that our approach—PATH_NA get the best 

performance in identifying the realistic failure-induce 

combinations among the three approaches from table X. 

V. RELATED WORKS 

Nie’s approach in [3] and [6] first separates the faulty-

possible tuples and healthy-possible tuples into two sets. 

Subsequently, by changing a parameter value at a time of the 

original test configuration, this approach generates extra test 

configurations. After executing the configurations, the 

approach converges by reducing the number of tuples in the 

faulty-possible sets. 

Delta debugging [5] proposed by Zeller is an adaptive 

divide–and-conquer approach to locating interaction fault. It is 

very efficient and has been applied to real software 

environment. Zhang et al. [4] also proposed a similar approach 

that can identify the failure-inducing combinations that has no 

overlapped part efficiently, 

Colbourn and McClary [7] proposed a non-adaptive method. 

Their approach extends the covering array to the locating array 

to detect and locate interaction faults.  

C. Martínez [8-9] proposed two adaptive algorithms. The 

first one needs safe value as their assumption and the second 

one remove the assumption when the number of values of each 

parameter is equal to 2. Their algorithms focus on identifying 

the faulty tuples that have no more than 2 parameters.  

Ghandehari.etc [10] defines the suspiciousness of tuple and 

suspiciousness of the environment of a tuple. Based on this, 

they rank the possible tuples and generate the test 

configurations. Although their approach imposes minimal 

assumption, it does not ensure that the tuples ranked in the top 

are the faulty tuples. 

Yilmaz [11] proposed a machine learning method to 

identify inducing combinations from a combinatorial testing set. 

They construct a classified tree to analyze the covering arrays 

and detect potential faulty combinations. Beside this, Fouché 

[12] and Shakya [13] made some improvements in identifying 

failure-inducing combinations based on Yilmaz’s work. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a new model to identify 

failure-inducing combinations. It uses TRT to record all the 

tuples under test and their relationships. Our approach can 

identify the overlapping faulty tuples while at the same time 

generating accurate results. The augmented approach—

PATH_NA can handle the newly introduced failure-inducing 

tuples very well. Our approach exhibits very good efficiency 

when identifying the faulty tuples in a failing test configuration. 

However, our approach needs further improvement as it 

uses large space to record the TRT (We need record 2
n
 nodes in 

a TRT). We have done some improvement to largely reduce the 

space needed to identify the minimal failure-inducing 

combinations, which will be reported in our future publications. 

Also the best number of extra test configurations needed to 

determine a faulty tuple will be investigated as an important 

part of our future work. Furthermore, we will apply our method 

into more complex software environments (such as SOA 

architecture software). 
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